WDMapp

Oct 09, 2020

Contents:

1 Overview

2 Building and Running WDMapp

2.1 Applying for ACCESS« o i e e e e e
2.2 WDMAppon Summitat OLCF e e e
23 WDMApponRheaatOLCF e e e
24 WDMapp on Longhorn at TACC e
25 WDMAppon AIMOS atRPIo
2.6 Settingup Spack e e e
277 Building WDMAPP
2.8 EFFIS. . . .

3 Indices and tables

CHAPTER 1

Overview

The Whole Device Model Application (WDMApp) in the DOE Exascale Computing Project (ECP) is developing
a high-fidelity model of magnetically confined fusion plasmas, urgently needed to plan experiments on ITER and
optimize the design of next-step fusion facilities. These devices will operate in high-fusion-gain physics regimes not
achieved by any experiment, making predictive numerical simulation the best tool for the task. WDMApp is focused
on building the main driver and coupling framework for a WDM. The main driver is based on the coupling of two
advanced and highly scalable gyrokinetic codes, XGC and GENE, where the former is a particle-in-cell code optimized
for the treating the edge plasma while the other is a continuum code optimized for the core. As an alternative, the GEM
gyrokinetic code can be used instead of GENE to simulate the core region. WDMApp aims to take advantage of the
complementary nature of the simulation codes to build the most advanced and efficient whole device kinetic transport
kernel for the WDM. A major part of the technical development work is targeting the coupling framework, which
will be further developed for exascale and optimized for coupling most of the physics modules that will operate at
various space and time scales. The current MPI +X is to be enhanced with communication-avoiding methods, task-
based parallelism, in situ analysis with resources for load optimization workflows, and deep memory hierarchy-aware
algorithms.

Sample simulation results from the WDMApp codes are available at http://wdmapp.pppl.gov/.

http://wdmapp.pppl.gov/

WDMapp

2 Chapter 1. Overview

CHAPTER 2

Building and Running WDMapp

In the following, we provide instructions on how to build and run WDMapp on specific machines. We are using the
Spack package manager, so it should be relatively straightforward to install on other machines as well, see also the
generic instructions below.

Overall, the process works like this:

» Apply for access

¢ Install Spack and customize for your machine.
Add the WDMapp Spack repo.
* Build and install WDMapp.

 Provide input parameters and setup for simulation run.

* Submit a job.

2.1 Applying for Access

2.1.1 Overview
The Whole Device Model Application (WDMApp) uses access controlled versions of XGC, GENE, GEM and sup-

porting tools. Before installing these packages users must first apply for access. Specific instructions for each package,
and WDMApp are given below.

2.1.2 XGC

Visit https://www.pppl.gov/organization/technology-transfer/software-access-request for instructions. Be sure to ref-
erence the WDMApp ECP project and list XGC-Develop as the needed software.

https://www.pppl.gov/organization/technology-transfer/software-access-request

WDMapp

2.1.3 GENE

Visit http://genecode.org/ then click the ‘Get GENE’ link at the top and fill out the form.

2.1.4 GEM

Visit http://www.gemgyrokinetic.org/, click the ‘Download File’ link at the bottom and follow the instructions within
the form.

2.1.5 WDMAPP

Once you have submitted applications to the above, and access has been granted, please send your GitHub and GENE
GitLab usernames to kai dot germaschewski at unh dot edu and smithcll at rpi dot edu so we can verify your access
to XGC, GENE, and GEM and give you membership to the WDMApp GitHub Organization.

2.2 WDMApp on Summit at OLCF

2.2.1 Setting up Spack

Spack is a generic package manager for HPC. We rely on it in the following to install WDMapp and its components.
Setting up Spack is a one-time process on a given machine — if you already have a working Spack install, you should be
able to use it. However, in practice there are plenty of ways that things can wrong, so we provide tested Spack setups
for a selection of machines. Following our instructions makes sure that WDMapp is built with compatible compilers
and machine-specific system packages (e.g., MPI, CUDA, etc.).

2.2.2 Installing Spack

Follow the instructions from the Spack Documentation.

$ git clone -b v0.15.4 https://github.com/spack/spack.git

Note: v0.15.4 is the latest spack stable version on 2020-10-20; newer versions will likely work but have not been
tested. Using the default ‘develop’ branch is not recommended, as it does break sometimes and introduces a lot of
package version churn if you try to track it.

Enable shell support for Spack.

For bash/zsh users
$ export SPACK_ROOT=/path/to/spack
$. SSPACK_ROOT/share/spack/setup—env.sh

For tcsh or csh users (note you must set SPACK_ROOT)
setenv SPACK_ROOT /path/to/spack
$ source S$SPACK_ROOT/share/spack/setup-env.csh

Ur

4 Chapter 2. Building and Running WDMapp

http://genecode.org/
http://www.gemgyrokinetic.org/
https://spack.readthedocs.io/en/latest/getting_started.html

WDMapp

2.2.3 Cloning the WDMapp package repo

Just clone the repository from github to the same machine that you just set up Spack on.

$ git clone git@github.com:wdmapp/wdmapp-config.git

Summit-Specific Setup

Rhea and Summit share a common home directory. If you use Spack on both machines, this leads to issues because
both instances will share their config files, which by default go into * ~/.spack/linux. If you only want to use
just one or the other machine, you can ignore the following note.

Note: One way to deal with keeping separate spack setups on Rhea and Summit is to make separate ~/ . spack/
linux-rhea and ~/spack/linux-summit directories and symlink one or the other to ~/ . spack/linux

$ # make sure ~/.spack/linux does exit yet —— if it does, move it out of the way
mkdir -p ~/.spack/linux-rhea

mkdir -p ~/.spack/linux-summit

In -snf ~/.spack/linux-rhea ~/.spack/linux # if on rhea

1In -snf ~/.spack/linux-summit ~/.spack/linux # if on summit

v »r A

An alternative is to have two separate spack installs, and instead of keeping the config files in ~/ . spack, they can
be put into $SPACK_ROOT/etc/spack, so with two different roots they can be kept separate. You can then do this
in your .bashrc:

if ["uname -m == "ppc6bdle"]; then
export SPACK_ROOT=SHOME/spack—-summit
else
export SPACK_ROOT=S$SHOME/spack-rhea
fi
source S$SPACK_ROOT/share/spack/setup-env.sh

Spack commands that edit configuration files such as spack compiler add can be called spack compiler
add —--scope site toupdate files living in $SSPACK_ROOT/etc/spack.

Employing our provided Spack configuration

Warning: The folllowing will overwrite an existing Spack configuration, so be careful if you’ve previously set
up Spack. If you have an existing config, consider renaming ~ . / spack to back it up.

Just copy the provided YAML configuration files to where Spack expects them:

$ mkdir -p ~/.spack/linux
$ cp path/to/wdmapp-config/summit/spack/*.yaml ~/.spack/linux

You can have a choice of a basic or a more comprehensive setup for Spack on Summit from the wdmapp-config
repository.

If you use the provided packages . yaml, it only tells Spack about essential existing pre-installed packages on Sum-
mit, ie., CUDA, MPI and the corresponding compilers. Spack will therefore build and install all other dependencies

2.2. WDMApp on Summit at OLCF 5

https://github.com/wdmapp/wdmapp-config/
https://github.com/wdmapp/wdmapp-config/tree/master/summit/spack

WDMapp

from scratch, which takes time but has the advantage that it’ll generate pretty much the same software stack on any
machine you use.

On the other hand, packages—-extended.yaml (which needs to be renamed to packages.yaml to be used),
tells Spack comprehensively about pre-installed software on Summit, so installation of WDMapp will proceed more
quickly and use system-provided libraries where possible.

Warning: Make sure that you don’t have x1 or spect rum-mpi loaded. By default, Summit will load the x1
and spectrum-mpi modules for you, and those interfere when Spack tries to perform gcc based builds. You
might want to consider adding this to your .bashrc or similar init file:

module unload x1 spectrum-mpi

Note: On Summit, the cuda module sets environment variables that set a path which nvcc does not otherwise
add. Because of this, it is requried to module load cuda/10.1.243 before building GENE, and probably other
software that uses CUDA...

Note: Consider also configuring spack to use gpfs scratch space (i.e. SMEMBERWORK) as an alternative when building
packages, in addition to the default tmp s and home filesystem (which can have problems with high workload tasks):

$ mkdir -p /gpfs/alpine/scratch/SUSER/<project-id>/spack-stage

and add the following to ~/.spack/config.yaml ($SPACK_ROOT/etc/spack/config.yaml). Spack
tries each entry in order for precedence:

config:
build stage:
- S$tempdir/$user/spack-stage
- /gpfs/alpine/scratch/SUSER/<project-id>/spack-stage
- ~/.spack/stage

2.2.4 Adding the WDMapp package repo to Spack

This will let Spack search the WDMapp repository for packages that aren’t found in its builtin package repository.

$ spack repo add path/to/wdmapp-config/spack/wdmapp
==> Added repo with namespace 'wdmapp'.

Note: To update the wdmapp package repository to the latest, just run git pull in the directory where you cloned
wdmapp—-config/.

2.2.5 Building WDMapp

You should be able to just follow the generic instructions from Building WDMAPP.

6 Chapter 2. Building and Running WDMapp

WDMapp

2.2.6 Running the Cyclone Test Case

Enable shell support for Spack:

For bash/zsh users
$ export SPACK_ROOT=/path/to/spack
$. SSPACK_ROOT/share/spack/setup-env.sh

For tcsh or csh users (note you must set SPACK_ROOT)
$ setenv SPACK_ROOT /path/to/spack
$ source S$SPACK _ROOT/share/spack/setup-env.csh

Load the wdmapp modules:

$ spack load wdmapp arch=linux-rhel7-power9le
$ spack load effis +compose arch=linux-rhel7-power9le

Clone the testcases repo:

$ git clone git@github.com:wdmapp/testcases.git
S cd testcases/run_1/summit

See the Workflow Composition in EFFIS page for help editing the workflow composition file. As quick pointers,
make sure to edit the path to the run directory (/path/to/testDir below) called rundir, the binaries labeled
executable_path, and the project, charge, in run_1.yaml.

Since we loaded the wdmapp module via Spack the binaries are in your PATH and their location can be retrieved with
the which xgc—es gene cpl command.

Run the effis pre-processor:

’$ effis-compose.py run_1.yaml

Submit the job:

’$ effis-submit /path/to/testDir

2.3 WDMApp on Rhea at OLCF

2.3.1 Setting up Spack

Spack is a generic package manager for HPC. We rely on it in the following to install WDMapp and its components.
Setting up Spack is a one-time process on a given machine — if you already have a working Spack install, you should be
able to use it. However, in practice there are plenty of ways that things can wrong, so we provide tested Spack setups
for a selection of machines. Following our instructions makes sure that WDMapp is built with compatible compilers
and machine-specific system packages (e.g., MPI, CUDA, etc.).

2.3.2 Installing Spack

Follow the instructions from the Spack Documentation.

$ git clone -b v0.15.4 https://github.com/spack/spack.git

2.3. WDMApp on Rhea at OLCF 7

https://spack.readthedocs.io/en/latest/getting_started.html

WDMapp

Note: v0.15.4 is the latest spack stable version on 2020-10-20; newer versions will likely work but have not been
tested. Using the default ‘develop’ branch is not recommended, as it does break sometimes and introduces a lot of
package version churn if you try to track it.

Enable shell support for Spack.

For bash/zsh users
$ export SPACK_ROOT=/path/to/spack
$. SSPACK_ROOT/share/spack/setup—-env.sh

For tcsh or csh users (note you must set SPACK_ROOT)
$ setenv SPACK_ROOT /path/to/spack
$ source S$SPACK_ROOT/share/spack/setup-env.csh

2.3.3 Cloning the WDMapp package repo

Just clone the repository from github to the same machine that you just set up Spack on.

$ git clone git@github.com:wdmapp/wdmapp-config.git

2.3.4 Rhea-Specific Setup

Rhea and Summit share a common home directory. If you use Spack on both machines, this leads to issues because
both instances will share their config files, which by default go into * ~/.spack/linux. If you only want to use
just one or the other machine, you can ignore the following note.

Note: One way to deal with keeping separate spack setups on Rhea and Summit is to make separate ~/ . spack/
linux-rhea and ~/spack/linux-summit directories and symlink one or the other to ~/ . spack/linux

$ # make sure ~/.spack/linux does exit yet —-- 1if it does, move it out of the way
mkdir -p ~/.spack/linux-rhea

mkdir -p ~/.spack/linux-summit

1n -snf ~/.spack/linux-rhea ~/.spack/linux # if on rhea

In -snf ~/.spack/linux-summit ~/.spack/linux # if on summit

Uy 0 r

An alternative is to have two separate spack installs, and instead of keeping the config files in ~/ . spack, they can
be put into $SPACK_ROOT/etc/spack, so with two different roots they can be kept separate. You can then do this
inyour .bashrc:

if ["uname -m° == "ppcocdle"]; then
export SPACK_ROOT=SHOME/spack—-summit
else
export SPACK_ROOT=$HOME/spack-rhea
fi
source S$SSPACK_ROOT/share/spack/setup-env.sh

Spack commands that edit configuration files such as spack compiler add can be called spack compiler
add --scope site to update files living in $SSPACK_ROOT/etc/spack.

8 Chapter 2. Building and Running WDMapp

https://github.com/wdmapp/wdmapp-config/

WDMapp

Employing our provided Spack configuration

Warning: The folllowing will overwrite an existing Spack configuration, so be careful if you’ve previously set
up Spack. If you have an existing config, consider renaming ~ . / spack to back it up.

Just copy the provided YAML configuration files to where Spack expects them:

$ mkdir -p ~/.spack/linux
$ cp path/to/wdmapp-config/rhea/spack/x.yaml ~/.spack/linux

On Rhea an olcf repo is also needed to make it possible to use system-installed packages from our Spack. This repo
is provided by the wdmapp-config you cloned earlier:

$ spack repo add path/to/wdmapp-config/rhea/spack/olct
==> Added repo with namespace 'olcf'

Note: Consider also configuring spack to use gpfs scratch space (i.e. $SMEMBERWORK) as an alternative when building
packages, in addition to the default tmpfs and home filesystem (which can have problems with high workload tasks):

$ mkdir -p /gpfs/alpine/scratch/SUSER/<project-id>/spack-stage

and add the following to ~/.spack/config.yaml ($SPACK_ROOT/etc/spack/config.yaml). Spack
tries each entry in order for precedence:

config:
build_stage:
- Stempdir/$user/spack-stage
- /gpfs/alpine/scratch/$SUSER/<project-id>/spack-stage
- ~/.spack/stage

2.3.5 Adding the WDMapp package repo to Spack

This will let Spack search the WDMapp repository for packages that aren’t found in its builtin package repository.

$ spack repo add path/to/wdmapp-config/spack/wdmapp
==> Added repo with namespace 'wdmapp'.

Note: To update the wdmapp package repository to the latest, just run git pull in the directory where you cloned
wdmapp-config/.

Note: The E4S project has created a build cache for Rhea. This provides many packages as precompiled binaries, so
will reduce the installation time. To use it:

$ wget https://oaciss.uoregon.edu/eds/eds.pub
$ spack gpg trust eds.pub
$ spack mirror add E4S https://cache.eds.io

2.3. WDMApp on Rhea at OLCF 9

https://e4s.io/

WDMapp

2.3.6 Building WDMapp

You should be able to just follow the generic instructions from Building WDMAPP.

Using E4S WDMapp docker container

Alternatively, the E4S project has created a docker image that mirrors the Rhea environment, which can be used for
local development and debugging. To run this image, you need to have docker installed and then do the following:

$ docker pull ecpeds/ubi7.7_x86_64_base_wdm:1.0
$ docker run --rm -it ecpeds/ubi7.7_x86_64_base_wdm:1.0

In order for the image to get the access controlled components, you need to provide it with your private SSH key that
provides access to the respective private github repos. In the image, do the following in the docker image:

cat > .ssh/id _rsa # Then copy&paste your private key
chmod 600 .ssh/id_rsa

This provides an development environment with everything but the private codes preinstalled. All that’s needed to
complete building and installing them is:

spack install wdmapp target=x86_64

2.3.7 Running the Cyclone Test Case

Enable shell support for Spack:

For bash/zsh users
export SPACK_ROOT=/path/to/spack
$. SSPACK_ROOT/share/spack/setup—env.sh

RO23

For tcsh or csh users (note you must set SPACK_ROOT)
setenv SPACK_ROOT /path/to/spack
$ source S$SSPACK_ROOT/share/spack/setup-env.csh

U

Load the wdmapp modules:

$ spack load wdmapp arch=linux-rhel7-sandybridge
$ spack load effis +compose arch=linux-rhel7-sandybridge

Clone the testcases repo:

$ git clone git@github.com:wdmapp/testcases.git
$ cd testcases/run_1l/rhea

See the Workflow Composition in EFFIS page for help editing the workflow composition file. As quick point-
ers, make sure to edit the path to the run directory (/path/to/testDir below) called rundir, the bina-
ries labeled executable_path, and the project, charge, in run_1.yaml (or run_externalCpl.yaml
if wdmapp+passthrough was built in Building WDMAPP).

Since we loaded the wdmapp module via Spack the binaries are in your PATH and their location can be retrieved with
the which xgc—-es gene cpl command.

Run the effis pre-processor:

10 Chapter 2. Building and Running WDMapp

https://e4s.io/

WDMapp

’$ effis-compose.py run_1.yaml

Submit the job:

’$ effis-submit /path/to/testDir

2.3.8 Running the Cyclone Test Case - External Coupler
The cyclone test case can be executed with the external coupler (wdmapp+passthrough built in Building

WDMAPP by following the instructions for Running the Cyclone Test Case using run_externalCpl.yaml in-
stead of run_1.yaml.

2.4 WDMapp on Longhorn at TACC

2.4.1 Setting up Spack

Spack is a generic package manager for HPC. We rely on it in the following to install WDMapp and its components.
Setting up Spack is a one-time process on a given machine — if you already have a working Spack install, you should be
able to use it. However, in practice there are plenty of ways that things can wrong, so we provide tested Spack setups
for a selection of machines. Following our instructions makes sure that WDMapp is built with compatible compilers
and machine-specific system packages (e.g., MPI, CUDA, etc.).

2.4.2 Installing Spack

Follow the instructions from the Spack Documentation.

$ git clone -b v0.15.4 https://github.com/spack/spack.git

Note: v0.15.4 is the latest spack stable version on 2020-10-20; newer versions will likely work but have not been
tested. Using the default ‘develop’ branch is not recommended, as it does break sometimes and introduces a lot of
package version churn if you try to track it.

Enable shell support for Spack.

For bash/zsh users
$ export SPACK_ROOT=/path/to/spack
$. SSPACK_ROOT/share/spack/setup—-env.sh

For tcsh or csh users (note you must set SPACK_ROOT)
setenv SPACK_ROOT /path/to/spack
$ source S$SPACK _ROOT/share/spack/setup-env.csh

Ur

2.4.3 Cloning the WDMapp package repo

Just clone the repository from github to the same machine that you just set up Spack on.

$ git clone git@github.com:wdmapp/wdmapp-config.git

2.4. WDMapp on Longhorn at TACC 11

https://spack.readthedocs.io/en/latest/getting_started.html
https://github.com/wdmapp/wdmapp-config/

WDMapp

2.4.4 Longhorn-Specific Setup

Employing our provided Spack configuration

Warning: The folllowing will overwrite an existing Spack configuration, so be careful if you’ve previously set
up Spack. If you have an existing config, consider renaming ~ . / spack to back it up.

Just copy the provided YAML configuration files to where Spack expects them:

$ mkdir -p ~/.spack/linux
$ cp path/to/wdmapp-config/longhorn/spack/*.yaml ~/.spack/linux

Note: Make sure that you don’t have a spectrum-mpi loaded. By default, Longhorn will load the x1 and
spectrum-mpi modules for you, and those interfere when Spack tries to perform gcc based builds. You might
want to consider adding this to your .bashrc or similar init file:

module unload x1 spectrum-mpi

Creating your own setup for Longhorn

Alternatively, you can create your own config:

module load gcc/7.3.0
spack compiler find

This should find a number of compilers, including gcc 7.3.0. You may want to repeat this step for gcc 9.1.0 — however,
there is currently no preinstalled MPI for this compiler.

The compilers on longhorn require LD_LIBRARY_PATH hackery to function, and spack sanitizes
LD_LIBRARY_PATH. The workaround is described here. In this case, edit ~/.spack/linux/compilers.
yaml using spack config edit compilers and modify the modules section for gcc 7 like this:

- compiler:

spec: gcc@7.3.0

paths:
cc: /opt/apps/gcc/7.3.0/bin/gcc
cxx: /opt/apps/gcc/7.3.0/bin/g++
£77: /opt/apps/gcc/7.3.0/bin/gfortran
fc: /opt/apps/gcc/7.3.0/bin/gfortran

flags: {}

operating system: rhel7”

target: ppcédle

modules: [gcc/7.3.0] # <-— ADD THIS

environment: {}

extra_rpaths: []

similar is required for gcc/9.1.0, and possibly for x1.

Add a minimal packages.yaml in ~/.spack/linux/packages.yaml that registers the preinstalled open-
mpi and cuda modules:

12 Chapter 2. Building and Running WDMapp

https://spack.readthedocs.io/en/latest/basic_usage.html#compiler-environment-variables-and-additional-rpaths

WDMapp

packages:

openmpi :
variants: +cuda fabrics=verbs
buildable: false
version: []
target: []
compiler: []
providers: {}
paths:

openmpi@3.1.2%gccR7.3.0: /opt/apps/gcc7_3/openmpi/3.1.2

modules: {}

cuda:
modules:
cuda@l0.1l: cuda/10.1
buildable: false
version: []
target: []
compiler: []
providers: {}
paths: {}

all:
providers:
mpi: [openmpi]
blas: [netlib-lapack]
lapack: [netlib-lapack]

The last section above sets defaults for all packages you’ll installing with Spack — you might want to adjust those, or
move them to an environment.

Fixing config.guess on longhorn

Spack has logic that will replace an outdated config.guess in a given package with a newer version. This comes
in handy, because apparently the latest autoconf version is from 2012 and the config.guess that comes with it
doesn’t know about ppc64le. However, on longhorn, Spack will not find a newer config.guess in /usr/
share/automakex/ , hence things still don’t work. To work around this, I hacked Spack like this:

diff --git a/lib/spack/spack/build_systems/autotools.py b/lib/spack/spack/build_
—systems/autotools.py
index c21b8dad7..f8e8f64fe 100644
-—— a/lib/spack/spack/build_systems/autotools.py
+++ b/lib/spack/spack/build_systems/autotools.py
@@ -133,11 +133,12 QR def _do_patch config guess (self):

if os.path.exists (path):

config_guess = path
Look for the system's config.guess

- if config_guess is None and os.path.exists('/usr/share'):

- automake_dir = [s for s in os.listdir('/usr/share') if
+ path_am = '/opt/apps/autotools/1.2/share'

+ if config_guess is None and os.path.exists(path_am):

+ automake_dir = [s for s in os.listdir(path_am) if

"automake" in s]
if automake_dir:
= automake_path = os.path.join('/usr/share', automake_dir[0])
+ automake_path = os.path.join (path_am, automake_dir[0])

(continues on next page)

2.4. WDMapp on Longhorn at TACC 13

WDMapp

(continued from previous page)

path = os.path.join (automake_path, 'config.guess')
if os.path.exists (path):
config_guess = path

2.4.5 Building WDMapp

You should be able to just follow the generic instructions from Building WDMAPP.

2.5 WDMApp on AiMOS at RPI

AIMOS is a 268 node IBM AC922 system with 2x IBM P9 and 6x NVIDIA V100 GPUs with 32GiB of memory each.
More info is available on the AiMOS wiki:

https://secure.cci.rpi.edu/wiki/index.php?title=DCS_Supercomputer
Github access requires setting up the http(s) proxy
https://secure.cci.rpi.edu/wiki/index.php?title=Proxy

and you’ll need to create an ssh key-pair for running MPI jobs

$ ssh-keygen # accept defaults

Warning: This will overwrite an existing 1d_rsa key pair.

2.5.1 Manual Install For Coupler Developers

XGC-Devel

Clone the repo

$ git clone https://github.com/wdmapp/XGC-Devel.git
$ cd XGC-Devel
$ git checkout rpi

Create a environment file with the following contents named envAimosGcc740penMPI. sh.

module use /gpfs/u/software/dcs-spack—-install/v0133gcc/1lmod/linux-rhel7-ppc64dle/gcc/7.
—~4.0-1/
module load gcc/7.4.0/1 openmpi/3.1.4-mm5hjug cmake/3.15.4-mngjvz6
module load \
adios/1.13.1-ev2pdam \
adios2/2.5.0-mklgé6ph \
petsc/3.7.7-int32-hdf5+ftn-real-c-7ewoudw \
fftw/3.3.8-b2oxdb5 \
pkg-config/system-cyeqmxc

source the environment file

$ source envAimosGcc740penMPI.sh

14 Chapter 2. Building and Running WDMapp

https://secure.cci.rpi.edu/wiki/index.php?title=DCS_Supercomputer
https://secure.cci.rpi.edu/wiki/index.php?title=Proxy

WDMapp

Create a build directory build-xgcDevel—-aimosGcc740penMPI, cd into it, and run CMake:

mkdir build-xgcDevel-aimosGcc740penMPI
cd !'$

specify the path to the XGC-Devel repo
cmake /path/to/xgc-devel/repo \
-DCMAKE_CXX_COMPILER=g++ \
-DCMAKE_C_COMPILER=gcc \
—-DCMAKE_Fortran_COMPILER=gfortran \
-DXGC_USE_ADIOS1=0ON \
~-DXGC_USE_ADIOS2=0FF \
-DXGC_USE_CABANA=OFF \
-DUSE_SYSTEM_PSPLINE=OFF \
-DXGC_GENE_COUPLING=O0ON \
-DBUILD_TESTING=QOFF \
-DCMAKE_INSTALL_PREFIX=5PWD/install

$
$
$
$

Run make to compile and link XGC:

$ make -38

If all goes well the xgc binary will be created; bin/xgc-es-cpp.

GENE

Clone the repo

$ git clone https://github.com/wdmapp/gene.git
$ git checkout rpi

Create a environment file with the following contents named envAimosGcc740penMPI . sh.

module use /gpfs/u/software/dcs-spack-install/v0133gcc/lmod/linux-rhel7-ppc6dle/gcc/7.

—4.0-1/

module load gcc/7.4.0/1

module load openmpi/3.1.4-mm5hjug

module load \
cmake/3.15.4-mngjvz6 \
adios/1.13.1-zrrxpbi \
adios2/2.5.0-rgsvxjd \
fftw/3.3.8-b2oxdb5 \
netlib-scalapack/2.0.2-7bndnga \
openblas/0.3.7-x7m3b6w \
z1ib/1.2.11-1pgvgh7 \
hdf5/1.10.3-ftn-tgragps

export OMPI_CXX=g++
export OMPI__ gec
export OMPI_FC=gfortran

source the environment file

$ source envAimosGcc740penMPI.sh

Create a build directory build-gene—-aimosGcc740penMPI, cd into it, and run CMake:

2.5. WDMApp on AiMOS at RPI 15

WDMapp

mkdir build-gene-aimosGcc740penMPI
cd !'s$

specify the path to the gene repo
cmake /path/to/gene/repo \
-DCMAKE_Fortran_COMPILER=gfortran \
-DCMAKE_CXX_COMPILER=g++ \
-DCMAKE_C_COMPILER=gcc \
-DGENE_USE_FUTILS=on \
-DGENE_USE_ADIOS2=on \
-DGENE_DIAG_PLANES=on \
-DGENE_PERF=none \

—-DGENE_WDMAPP=0on

v »r A

Run make to compile and link GENE:

$ make -3j8

If all goes well the gene binary will be created; src/gene.

Run

Clone the testcases repo (https://github.com/wdmapp/testcases) then follow the instructions in run_I/README.md:
https://github.com/wdmapp/testcases/blob/master/run_1/README.md

2.6 Setting up Spack

Spack is a generic package manager for HPC. We rely on it in the following to install WDMapp and its components.
Setting up Spack is a one-time process on a given machine — if you already have a working Spack install, you should be
able to use it. However, in practice there are plenty of ways that things can wrong, so we provide tested Spack setups
for a selection of machines. Following our instructions makes sure that WDMapp is built with compatible compilers
and machine-specific system packages (e.g., MPI, CUDA, etc.).

2.6.1 Installing Spack

Follow the instructions from the Spack Documentation.

$ git clone -b v0.15.4 https://github.com/spack/spack.git

Note: v0.15.4 is the latest spack stable version on 2020-10-20; newer versions will likely work but have not been
tested. Using the default ‘develop’ branch is not recommended, as it does break sometimes and introduces a lot of
package version churn if you try to track it.

Enable shell support for Spack.

For bash/zsh users
$ export ¢ _ROOT=/path/to/spack

NAT

)OT/share/spack/setup-env.sh

For tcsh or csh users (note you must set SPACK_ROOT)

(continues on next page)

16 Chapter 2. Building and Running WDMapp

https://github.com/wdmapp/testcases
https://github.com/wdmapp/testcases/blob/master/run_1/README.md
https://spack.readthedocs.io/en/latest/getting_started.html

WDMapp

(continued from previous page)

$ setenv SPACK_ROOT /path/to/spack

SO

$ source $SPACK_ROOT/share/spack/setup—env.csh

2.6.2 Cloning the WDMapp package repo

Just clone the repository from github to the same machine that you just set up Spack on.

$ git clone git@github.com:wdmapp/wdmapp-config.git

2.6.3 Adding the WDMapp package repo to Spack

This will let Spack search the WDMapp repository for packages that aren’t found in its builtin package repository.

$ spack repo add path/to/wdmapp-config/spack/wdmapp
==> Added repo with namespace 'wdmapp'.

Note: To update the wdmapp package repository to the latest, just run git pull in the directory where you cloned
wdmapp-config/.

2.6.4 Machine-Specific Setup
Ubuntu 18.04

On Ubuntu 18.04, nothing special needs to be done, though installation can be sped up by adding a packages.yaml
that teaches it about system-installed software so that it doesn’t have to build everything from scratch.

2.7 Building WDMAPP

Note: In order to install the non-public packages that are part of the wdmapp metapackage, you will need SSH keys
set up correctly with GitHub. This requires creating an ssh key on the machine you will be installing wdmapp (or
use existing key if you have one) and adding the key to your GitHub account. If your SSH key has a passphrase
(highly recommended), you will also need to run ssh-agent and add the key to ssh-agent with ssh-add. SSH Agent
forwarding may also be an option, but be aware of the security trade offs and make sure it is supported on the target
machine (in particular Summit and other OLCF machines do not allow agent forwarding). For details, see the GitHub
documentation Connecting to GitHub with SSH.

2.7.1 Standard Installation

Building WDMapp can be done following the standard Spack way:

$ spack install wdmapp

2.7. Building WDMAPP 17

https://github.com/wdmapp/wdmapp-config/
https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh

WDMapp

Then, have a coffee and keep your fingers crossed.

The wdmapp packages is a metapackage (“BundlePackage” in Spack parlance) that pulls in proper versions and vari-
ants of GENE, XGC, the Coupler and TAU and all their dependencies to have everything in place to run a coupled
simulation:

$ spack spec wdmapp
Input spec

wdmapp

Concretized

wdmapp@0.0.1%gccl7.5.0+tau~xgcl_legacy arch=linux-ubuntul8.04-haswell
~“coupler@master%gcc@7.5.0 build type=RelWithDebInfo arch=linux-ubuntul8.04-haswell
~“genelcoupling%$gcc@7.5.0+adios2 build_type=RelWithDebInfo ~cuda cuda_arch=none_,

—+diag_planes+futils perf=perfstubs +pfunit+wdmapp arch=linux-ubuntul8.04-haswell

“tau@develop%$gcc@7.5.0+adios2~bggt+binutils~comm~craycnl~cuda+fortran~
—gasnet+iot+libdwarf+libelf~libunwind~likwid+mpi~ompt~opari~openmptotf2+papi~pdt~
—phase~ppcbd4le~profilepa

~xgc—devel@wdmapp%$gcc@7.5.0~adios2 build type=RelWithDebInfo ~cabana+coupling_
—core_edge_gene arch=linux-ubuntul8.04-haswell

Then install effis:

$ spack install effis

2.7.2 Installing for development

Note: The following describes how to do development builds of gene (XGC can be done correspondingly) using spack
setup. This way appears to be deprecated in favor of spack dev-build. It does work, but requires some workarounds
and can subtly vary from how things are built using spack install or spack dev-build.

Most of the time, one needs to be able to specify the exact version of the code, make changes, etc. Spack can still help
with development.

First of all, get a local clone of the git repository for, e.g., GENE. You probably already have one, so you can use that.
Otherwise:

$ git clone git@gitlab.mpcdf.mpg.de:GENE/gene—-dev.git
$ git checkout cuda_under_the_hood

The method described here relies on the cmake build of GENE, though you could choose to just use Spack to install
dependencies for you, and then handle things manually as usual.

Next, create a build director and change into it:

$ cd gene-dev
S mkdir build
$ cd build

Now, have Spack set up the build for you — but not actually do it:

18 Chapter 2. Building and Running WDMapp

WDMapp

$ spack setup gene@local
[...]

==> Generating spconfig.py

Note: Something is currently broken with Spack, which likely gives you Error: 'SPACK_DEPENDENCIES'.
If that happens, you can work around it by setting export SPACK_DEPENDENCIES="" and trying agian.

The spack setup will install all required dependencies, and then creates spconfig. py file in the current direc-
tory. This script can be used as a replacement to the usual invocation of cmake.

$./spconfig.py .. # .. is the path to the sources

[...]

—-— Generating done

—— Build files have been written to: /home/src/gene-dev/build

So then you’re all set. Just call make.

$ make -3j20
[...]

2.8 EFFIS

EFFIS is a workflow composition and execution framework, which enables efficient code coupling and provides a
toolset for visualization and analysis. It is currently being developed within the ECP Whole Device Modeling project.

2.8.1 Workflow Composition in EFFIS

EFFIS jobs are composed with a YAML configuration file.
e effis-compose.py <config file name> builds the job
e effis-submit <job directory> submits the job to the queue.

Bulding and submitting the example Rhea job below looks something like:

$ effis-compose.py ~/testcases/run_1/rhea/run_1.yaml
$ effis-submit /gpfs/alpine/proj-shared/cscl43/esuchyta/effis/rhea/wdmapp/xgc-gene—1

Detailed YAML Paramter Example

Below is a configuration file from our run repository for core-edge coupling on Rhea. To better itemize the discussion,
it has been broken up into to several smaller units.

Some top-level keywords set where on the file system the job will run, as well as scheduler configurations.

jobname: xgc-gene # Name of job given to scheduler (default = kittie-job, but_
—setting is recommended)
walltime: 3600 # Job walltime request in seconds (default = 3600)

EFFIS required parameter: directory for job output, each code runs in separte,
—subdirectory

(continues on next page)

2.8. EFFIS 19

https://github.com/wdmapp/effis
https://github.com/wdmapp/testcases
https://github.com/wdmapp/testcases/blob/master/run_1/rhea/run_1.yaml

WDMapp

(continued from previous page)

rundir: /gpfs/alpine/proj-shared/cscl43/esuchyta/effis/rhea/wdmapp/xgc-gene-1

EFFIS required section: setup for the machine to run on
machine:
name: rhea # rhea, summit, theta, cori, local
queue: batch
charge: cscl43

job_setup: run_1_setup.sh # Shell script to run once job has started (on service_
—node)
Users can define their own variables, for referencing throughout the file. Deferencing looks like

${variable—name}. (See further below.)

User defined variables, see dereferencing in file-edits
period 1d: 1 # XGC output frequency for diagnosis.I1D

period 3d: 1 # XGC output frequency for field3D
steps: 100 # Number of simulation steps to run
planes: 8 # Number of poloidal plans

rho: 4 # XGC radial parameter

Shell commands, copies, regular expression file search and replace (using Python re syntax) are available during job
configuration. (See subsequent file sections as well.)

Shell commands to run during job composition, i.e. before submission to scheduler
pre-submit—-commands: ["mkdir coupling"]

NOTE some EFFIS instructions can live in top-level or code level scope, e.g.
* pre—-submit-commands

+ copy, copy-contents

4 link

* file-edit

run is the section where to specify the codes to run, along with their process decompositions.

EFFIS required section: Codes to run and their setups
run:

Each code has a scope under run, where users can adjust settings specific to that code. ADIOS I/O groups can be
configured, and matched where relevant for coupling.

Starting with gene.

'gene' (or others below) is just a label name, and will run in subdirectory name,,
—gene/

gene:
pre-submit-commands: ["mkdir out"] # Like pre-submit-commands above
processes: 16 # Number of MPI ranks
processes—-per—node: 16 # Number of MPI ranks per node
cpus—-per—-process: 1 # Number of CPUs per MPI rank

File path to executable to run
executable_path: /autofs/nccs-svml_homel/esuchyta/spack/spack/opt/spack/linux-rhel7-
—sandybridge/gcc-8.4.0/gene-app-coupling-pysy59gk373yqgzlfjotayvxg3widrdtjjh/bin/gene

Environment variables
env:
OMP_NUM_THREADS: 1

(continues on next page)

20 Chapter 2. Building and Running WDMapp

WDMapp

(continued from previous page)

HDF5_USE_FILE_LOCKING: 'FALSE'

Files to copy
copy :
- ../GENE/parameters
- ../GENE/XGC_map_circular_2020_new.h5
- ../GENE/adios2cfg.xml
- ../GENE/tracer_fast
- ../GENE/profiles_ions
- ../GENE/coupling.in

Files to edit (paramters is the main GENE configuration file)
file—-edit:
parameters:
- ['""\s*ntimesteps\s*x=.%$"', 'ntimesteps=${steps}']
- ['""\s*n_planes\sx=.%$', 'n_planes=${planes}"']

ADIOS groups are prefaced with leading

.density_coupling:
output_path: density.bp
adios_engine: SST

'reads' matching for coupling reading
.field_coupling:
reads: xgc.field_coupling

xgc looks similar to gene but has different input files.

xgc:
pre-submit—-commands: ["mkdir restart_dir"]
processes: 64 # Number of MPI ranks
processes—-per—node: 8 # Number of MPI ranks per node
cpus—per—-process: 1 # Number of CPUs per MPI rank

File path to executable to run

executable_path: /autofs/nccs-svml_homel/esuchyta/spack/spack/opt/spack/linux-rhel7-
—sandybridge/gcc-8.4.0/xgc-devel-cmake-suchyta-z5bm7gdz6émiin7ypf6hpv2yuxszkndrgd/bin/
—xgc-es

Environment variables
env:
OMP_NUM_THREADS: 1
HDF5_ USE_FILE_LOCKING: 'FALSE'

Files to copy
copy:
- ../XGC/input
- ../XGC/adioscfg.xml
- ../XGC/adios2cfg.xml
- ../XGC/petsc.rc
- ../XGC/geqdsk_gene_comp_case5_fix.eqd
- ../XGC/geqdsk_gene_comp_caseb5_fixed.eqd.node
- ../XGC/gegdsk_gene_comp_caseb5_fixed.egd.ele
- ../XGC/den_gene_case5.prf
- ../XGC/temp_gene_case5_fix.prf
- ../XGC/perturbation.in

(continues on next page)

2.8. EFFIS 21

WDMapp

(continued from previous page)

- ../XGC/ogyropsi_init_cond.bp

Files to edit (input is the main XGC configuration file)

file-edit:
input
- ['""\sxsml_mstep\s*=.%$"', 'sml_mstep=S${steps}"']
- ['""\s*sml_nphi_total\s*=.%$', 'sml_nphi_total=${planes}"']
— ['""\s*sml_grid_nrho\s*=.%$', 'sml_grid_nrho=${rho}"]
- ['""\sxdiag_ld_period\sx*=.%$', 'diag_ld_period=${period_1d}"]
- ['"\sxdiag_3d_period\sx*=.%$', 'diag_3d_period=${period_3d}']
- ['"\sxadios_stage_3d\sx=.x$"', 'adios_stage_3d=.true.']

ADIOS groups are prefaced with leading

.diagnosis.1ld:
output_path: xgc.oneddiag.bp
adios_engine: BP4

.field3D:
output_path: xgc.3d.bp
adios_engine: BP4

.diagnosis.mesh:
output_path: xgc.mesh.bp
adios_engine: BP4

'reads' matching for coupling reading
.density_coupling:
reads: gene.density_coupling

.field_coupling:
output_path: field.bp
adios_engine: SST

One and two dimensional plotting can be turned on with special run keyword sections.

Plot all variable in XGC's diagnosis.ld that use psi as x-axis
plot-1D:

x: psi

data: xgc.diagnosis.1ld

Plot varables with same dimensions as XGC field3D's dpot on triangular mesh
plot-triangular:
commandline_args:

- rz # Name in mesh file of variable for the nodes
- nd_connect_list # Name im mesh file for the node connectivity
— dpot [0] # Dimension setter

.mesh:

reads: xgc.diagnosis.mesh

.plotter:
plots: xgc.field3D

For clarity and completion, here is the full file.

22 Chapter 2. Building and Running WDMapp

WDMapp

jobname: xgc-gene # Name of job given to scheduler (default = kittie-job, but
wsetting is recommended)
walltime: 3600 # Job walltime request in seconds (default = 3600)

User defined variables, see dereferencing in file-edits
period 1d: 1 # XGC output frequency for diagnosis.I1D

period _3d: 1 # XGC output frequency for field3D
steps: 100 # Number of simulation steps to run
planes: 8 # Number of poloidal plans

rho: 4 # XGC radial parameter

EFFIS required parameter: directory for job output, each code runs in separte,
—subdirectory
rundir: /gpfs/alpine/proj-shared/cscl43/esuchyta/effis/rhea/wdmapp/xgc—gene-1

EFFIS required section: setup for the machine to run on
machine:

name: rhea # rhea, summit, theta, cori, local

queue: batch

charge: cscl43

job_setup: run_1_setup.sh # Shell script to run once job has started (on service_
—node)

Shell commands to run during job composition, i.e. before submission to scheduler
pre-submit—-commands: ["mkdir coupling"]

NOTE some EFFIS instructions can live in top-level or code level scope, e.g.
* pre-submit-commands

* link

#
#
* copy, copy-contents
#
+ file-edit

EFFIS required section: Codes to run and their setups
run:

'gene' (or others below) is just a label name, and will run in subdirectory name_
—gene/

gene:
pre-submit-commands: ["mkdir out"] # Like pre-submit-commands above
processes: 16 # Number of MPI ranks
processes—-per—-node: 16 # Number of MPI ranks per node
cpus—per-process: 1 # Number of CPUs per MPI rank

File path to executable to run

executable_path: /autofs/nccs-svml_homel/esuchyta/spack/spack/opt/spack/linux-—
—rhel7-sandybridge/gcc-8.4.0/gene-app-coupling-pysy5gk373yqgzlfjotayvxq3wdrdtjjh/bin/
—gene

Environment variables
env:
OMP_NUM_THREADS: 1
HDF5 _USE_FILE_ LOCKING: 'FALSE'

Files to copy

copy:
- ../GENE/parameters

(continues on next page)

2.8. EFFIS 23

WDMapp

(continued from previous page)

- ../GENE/XGC_map_circular_2020_new.h5
- ../GENE/adios2cfg.xml

- ../GENE/tracer_fast

- ../GENE/profiles_ions

- ../GENE/coupling.in

Files to edit (paramters is the main GENE configuration file)
file—edit:
parameters:
- ['""\sx*ntimesteps\s*=.%$', 'ntimesteps=${steps}']
- ['""\s*n_planes\s*=.%$', 'n_planes=${planes}']

ADIOS groups are prefaced with leading

.density_ coupling:
output_path: density.bp
adios_engine: SST

'reads' matching for coupling reading
.field_coupling:
reads: xgc.field_coupling

xgc:
pre—-submit-commands: ["mkdir restart_dir"]
processes: 64 # Number of MPI ranks
processes-per—node: 8 # Number of MPI ranks per node
cpus—per-process: 1 # Number of CPUs per MPI rank

File path to executable to run

executable_path: /autofs/nccs-svml_homel/esuchyta/spack/spack/opt/spack/linux-—
—srhel7-sandybridge/gcc-8.4.0/xgc—devel-cmake-suchyta-
—zbm7gdz6émiin7ypf6hpv2yuxszkndrgd/bin/xgc-es

Environment variables
env:
OMP_NUM_ THREADS: 1
HDF5 USE _FILE LOCKING: 'FALSE'

Files to copy
copy :
- ../XGC/input
- ../XGC/adioscfg.xml
- ../XGC/adios2cfg.xml
- ../XGC/petsc.rc
- ../XGC/geqdsk_gene_comp_case5_fix.eqd
- ../XGC/geqdsk_gene_comp_case5_fixed.eqgd.node
- ../XGC/geqdsk_gene_comp_case5_fixed.eqgd.ele
- ../XGC/den_gene_caseb.prf
- ../XGC/temp_gene_case5_fix.prf
- ../XGC/perturbation.in
- ../XGC/ogyropsi_init_cond.bp

Files to edit (input is the main XGC configuration file)

file-edit:
input:
- ['""\s*sml_mstep\s*=.%$"', 'sml_mstep=S${steps}"']
— [""\s*sml_nphi_totall\s*=.x$"', 'sml_nphi_total=${planes}"']

(continues on next page)

24 Chapter 2. Building and Running WDMapp

WDMapp

(continued from previous page)

'""\s*sml_grid_nrho\s*=.%$', 'sml_grid_nrho=${rho}"']

[
- ['""\s*diag_1ld period\sx=.%$"', 'diag_ld period=${period_1d}"']
- ['""\sxdiag_3d_period\s*=.%$"', 'diag_3d_period=${period_3d}"]
- ['""\sxadios_stage_3d\s*=.x$"', 'adios_stage_3d=.true."']

ADIOS groups are prefaced with leading

.diagnosis.1ld:
output_path: xgc.oneddiag.bp
adios_engine: BP4

.field3D:
output_path: xgc.3d.bp
adios_engine: BP4

.diagnosis.mesh:
output_path: xgc.mesh.bp
adios_engine: BP4

'reads' matching for coupling reading
.density_coupling:
reads: gene.density_coupling

.field_coupling:
output_path: field.bp
adios_engine: SST

Plot all variable in XGC's diagnosis.ld that use psi as x—axis
plot-1D:

x: psi

data: xgc.diagnosis.1ld

Plot varables with same dimensions as XGC field3D's dpot on triangular mesh
plot-triangular:
commandline_args:
- rz # Name in mesh file of variable for the nodes
- nd_connect_list # Name im mesh file for the node connectivity
— dpot [0] # Dimension setter

.mesh:
reads: xgc.diagnosis.mesh

.plotter:
plots: xgc.field3D

2.8.2 Performance Monitoring with TAU

‘We have instrumented our codes, and to run XGC/GENE with TAU, tau_exec becomes the executable to run and
the application is a command line argument to t au_exec. For example, a snippet for XGC might look like.

tau: /autofs/nccs-svml_homel/esuchyta/spack/wdmapp/rhea/spack/opt/spack/linux-rhel7—
—ssandybridge/gcc-8.4.0/tau-develop-ezg374unf3gephlxov5avmmagsplidn2/bin/tau_exec
xgce: /autofs/nccs-svml_homel/esuchyta/spack/wdmapp/rhea/spack/opt/spack/linux-rhel7-
—sandybridge/gcc-8.4.0/xgc—devel -wdmapp-pvku3hgsnbpfzx3apmkn3fwrfefvu37a/bin/xgc-es

(continues on next page)

2.8. EFFIS 25

WDMapp

(continued from previous page)

run:
xgc:

executable_path: ${tau}

commandline_args:
- -T
- mpi
- -monitoring
- —adios2
- ${xgc}
- —-no_signal_handle

TAU expects the directory in which tau_exec lives to be PATH, so make sure to spack load tau in the
job_setup file when using TAU, e.g. our example on Rhea.

EFFIS is able to generate plots of the performance data TAU collects, in a way similar to the one-dimensional plotting:

run:

plot-tau-xgc:
data: xgc.tau
commandline_options:
pattern: (BP4Writer|ADIOS_WRITE|MAIN_LOOP\s/)
step: "MAIN_LOOP / Calls"

pattern uses Python re syntax to pick which variable to plot. step is which variable identifies the code’s time step.

2.8.3 Enabling the Dashboard

To turn on the processing that packages up EFFIS images for use with the dashboard, one needs to configure a
dashboard top-scope section in the configuration file.

base: wdmapp-1
rundir: /gpfs/alpine/proj-shared/cscl43/esuchyta/effis/rhea/wdmapp/${base}
adios-nompi: /autofs/nccs-svml_homel/esuchyta/spack/wdmapp/rhea/spack/opt/spack/linux—
—rhel7-sandybridge/gcc-8.4.0/adios2-2.6.0-k62srrf7btzanzeattmk35orggd6uyvn
dashboard:

use: true

shot_name: ${base}

run_name: run-1
http: /ccs/wwwproj/phyl22/esuchyta/wdmapp-dashboard/shots
env:

ADIOS: ${adios-nompi}/lib/python3.7/site-packages

http is a directory that is web accessible for remote download. At OLCEF, there is one such area, and it is only
accessible from the service/login nodes, where MPI does not work. This is why an ADIOS2 build without MPI is
needed, which can be built with:

$ spack install adios2 -mpi +python

shot-name and run-name are both text labels, where run—name is meant to allow multiple restarted runs in the
same shot.

26 Chapter 2. Building and Running WDMapp

https://github.com/wdmapp/testcases/blob/master/run_1/rhea/run_1_setup.sh
https://docs.python.org/3/library/re.html

WDMapp

Deploying the Remote Dashboard

Instructions for how to deploy a run an instance of the dashboard that connects to this data can be found on in the
eSimMon documentation. In short, a monitoring service will given the web address for the ht tp directory, pull new
data when it becomes available, and then display the images thorugh a web server that multiple uers can connect to.

2.8. EFFIS 27

https://github.com/Kitware/eSimMon

WDMapp

28 Chapter 2. Building and Running WDMapp

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

29

	Overview
	Building and Running WDMapp
	Applying for Access
	WDMApp on Summit at OLCF
	WDMApp on Rhea at OLCF
	WDMapp on Longhorn at TACC
	WDMApp on AiMOS at RPI
	Setting up Spack
	Building WDMAPP
	EFFIS

	Indices and tables

